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Abstract
This paper presents a mobility-adaptive Slotted ALOHA (MA-SA) protocol designed for vehicular ad-hoc
networks (VANETs) with dynamic topologies. Current MAC protocols for vehicular communications
often suffer from decreased performance in high-mobility scenarios due to their inability to adapt to
rapidly changing network conditions. We propose a novel approach that dynamically adjusts transmission
parameters based on real-time mobility metrics. Our protocol incorporates a spatiotemporal correlation
model that predicts vehicle movement patterns to optimize slot allocation. Through extensive simulations
and a small-scale field trial, we demonstrate that MA-SA achieves up to 37% higher throughput and 42%
lower packet collision rates compared to traditional Slotted ALOHA implementations under high-mobility
conditions (120-150 km/h). Performance improvements are particularly significant in scenarios with
heterogeneous vehicle speeds and dense traffic conditions. The protocol exhibits graceful degradation
in extremely congested networks where relative mobility exceeds predictive capabilities. We provide a
comprehensive mathematical framework for mobility prediction and slot allocation, including closed-form
expressions for optimal backoff parameters as functions of vehicle density and relative speed. Our findings
suggest that mobility-aware MAC protocols represent a promising direction for improving the reliability
of safety-critical applications in intelligent transportation systems.

1. Introduction
Vehicular Ad-hoc Networks (VANETs) have emerged as a critical component of Intelligent Trans-
portation Systems (ITS), enabling vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communications to support applications ranging from traffic efficiency to road safety (Bao and Wang
2015). Unlike traditional mobile ad-hoc networks, VANETs are characterized by high node mobility,
rapidly changing network topologies, and stringent latency requirements for safety-critical applica-
tions. These unique characteristics pose significant challenges for Medium Access Control (MAC)
protocols, which must ensure reliable and timely message delivery in highly dynamic environments.

The IEEE 802.11p standard, which forms the basis for Dedicated Short-Range Communications
(DSRC), employs a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) mechanism.
However, numerous studies have highlighted its limitations in high-density and high-mobility
scenarios, particularly with respect to unbounded channel access delays and the hidden terminal
problem. Alternative approaches based on Time Division Multiple Access (TDMA) offer deterministic
channel access but face challenges in dynamic network topologies due to their reliance on fixed slot
assignments.

Slotted ALOHA (SA) protocols represent a promising alternative due to their simplicity and
distributed nature (Wang and Lee 2010). However, conventional SA implementations exhibit
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suboptimal performance in vehicular environments as they fail to account for the impact of mobility
on network dynamics (Iskandarani 2024; Liva 2010). This paper introduces a Mobility-Adaptive
Slotted ALOHA (MA-SA) protocol that dynamically adjusts transmission parameters based on
vehicular mobility patterns.

The fundamental insight driving our approach is that vehicle movement exhibits significant
spatiotemporal correlation, which can be leveraged to optimize MAC layer operations. By incorpo-
rating mobility prediction into the slot selection and backoff mechanisms, our protocol adapts to
changing network conditions in real-time, significantly improving channel utilization and reducing
packet collisions in high-mobility scenarios.

Our contributions are multi-fold: 1. We develop a mathematical framework that characterizes
the relationship between vehicle mobility and MAC layer performance metrics. (Hao, Chen, and
Yan 2013) 2. We propose a novel slot allocation algorithm that leverages mobility prediction to
minimize collision probability. 3. We introduce an adaptive backoff mechanism that dynamically
adjusts contention parameters based on estimated node density and relative mobility. 4. We present
a comprehensive evaluation of our protocol through both simulation and a real-world testbed,
demonstrating significant performance improvements over conventional approaches.

The remainder of this paper is organized as follows. Section 2 provides a review of related work
in vehicular MAC protocols with a focus on mobility awareness. Section 3 presents the system model
and theoretical foundations of our approach. Section 4 details the design and implementation of the
MA-SA protocol. Section 5 describes our evaluation methodology and presents performance results.
Finally, Section 6 concludes the paper and discusses future research directions.

2. Review
The development of efficient Medium Access Control (MAC) protocols for vehicular communication
has been an active research area for over a decade. With the rapid advancement of Intelligent
Transportation Systems (ITS), ensuring reliable, low-latency, and high-throughput communication
between vehicles has become increasingly critical. Various approaches have been proposed to design
MAC protocols that effectively manage channel access, mitigate interference, and optimize network
performance. This section provides a comprehensive review of major contributions in this domain,
with a particular focus on approaches that explicitly consider mobility characteristics in protocol
design. (Beltramelli et al. 2020)

2.1 Contention-Based MAC Protocols for VANETs
Contention-based MAC protocols play a significant role in vehicular ad hoc networks (VANETs)
due to their decentralized nature and adaptability to dynamic environments. The IEEE 802.11p
standard, a key component of the Wireless Access in Vehicular Environments (WAVE) framework,
represents the most widely adopted contention-based approach for vehicular communication. This
protocol leverages the Distributed Coordination Function (DCF) with Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) to regulate medium access.

Performance evaluations of IEEE 802.11p in vehicular environments have identified several
challenges. One of the key issues is performance degradation in high-density scenarios due to
increased collision probability and the hidden terminal problem. These challenges arise due to
the random backoff mechanism, which becomes less effective as the number of contending nodes
increases (Huang, Ye, and Lee 2019). To address this, various enhancements have been proposed.

Several approaches have focused on modifying the contention window (CW) to improve effi-
ciency. Dynamic CW adjustment mechanisms have been introduced, where the backoff parameters
are modified based on estimated channel load. These methods aim to optimize throughput under
varying traffic densities but often do not explicitly account for node mobility. Other schemes have
introduced cross-layer contention resolution techniques that adjust transmission parameters based
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on application requirements and channel conditions. However, many of these approaches provide
limited consideration of mobility patterns, focusing primarily on static or semi-dynamic conditions.

Random access protocols derived from the ALOHA family have also been explored for vehicular
networks (Ahmetoglu, Yavascan, and Uysal 2021). Multichannel Time Division Multiple Access
(TDMA) protocols have been designed to allocate disjoint sets of time slots to vehicles moving
in opposite directions, reducing the collision probability. While such schemes implicitly consider
mobility direction, they do not dynamically adapt to varying speeds or complex traffic patterns. Other
enhancements include slotted p-persistent ALOHA variants that adjust transmission probability based
on estimated vehicle density, demonstrating improved performance in dynamic traffic conditions.
However, these methods often rely on global density estimation, which is challenging to obtain in
distributed environments.

2.2 Mobility-Aware MAC Protocols
Recognizing the impact of mobility on MAC performance, several protocols have been designed to
explicitly incorporate mobility metrics. Cluster-based MAC protocols have been proposed where
cluster formation and maintenance are guided by vehicle movement patterns (Sangeetha, Parthiban,
and Gopi 2015). These protocols are effective in relatively stable mobility scenarios but suffer from
high overhead in environments with frequent topology changes.

Mobility-aware contention-based protocols have also been introduced. One approach involves
adjusting contention windows based on the relative speeds between vehicles. Simulation results for
such methods have demonstrated improved throughput in highway scenarios. However, many of
these techniques rely on simplified mobility models that may not capture the complexity of real-world
traffic.

Another line of research has focused on predictive approaches, where future vehicle positions
are estimated to optimize slot allocation in TDMA-based MAC protocols (Liva 2010). These
methods have shown promising results in reducing access collisions. However, they require accurate
positioning information and face challenges in urban environments with complex road geometries.

More recently, machine learning techniques have been explored for MAC parameter optimization.
Reinforcement learning approaches have been applied to dynamically adjust contention parameters,
implicitly capturing mobility effects through observed channel conditions. While such methods offer
promising adaptability, they require significant training data and computational resources, which
can be a limiting factor in resource-constrained vehicular systems.

2.3 Analytical Models for Vehicular MAC Protocols
The analytical modeling of MAC protocols in mobile environments has received considerable
attention. Traditional models of IEEE 802.11 DCF based on Markov chains have been extended
to incorporate mobility effects (Zhang et al. 2020). These models demonstrate how throughput
degrades with increasing speed differentials between communicating nodes.

For slotted ALOHA systems, analytical expressions have been derived for throughput in mobile
ad hoc networks, showing that performance is significantly affected by node mobility. Building
on these analyses, mobility-aware models for slotted ALOHA in VANETs have been developed,
incorporating vehicle density and speed distributions. These models provide valuable insights into
the relationship between mobility parameters and protocol performance but do not always propose
adaptive mechanisms to mitigate mobility-induced performance degradation.

2.4 Comparative Analysis of MAC Protocols
Contention-based MAC protocols and mobility-aware MAC protocols differ in their approach to
handling dynamic vehicular environments. Contention-based protocols offer a decentralized and
adaptive solution but struggle with collision probability in dense networks (Asvadi and Ashtiani
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2023). On the other hand, mobility-aware protocols attempt to leverage mobility information to
optimize performance, though they often introduce additional overhead.

Time-division-based approaches, such as TDMA and hybrid MAC schemes, offer improved
collision avoidance but require accurate synchronization mechanisms. Prediction-based strategies
provide enhanced performance in structured mobility environments, such as highways, but may not
perform well in highly dynamic urban scenarios. Reinforcement learning-based approaches promise
adaptability but pose computational and implementation challenges.

2.5 Research Gap
Despite the significant body of work on vehicular MAC protocols, several limitations remain in
existing approaches:

• Most mobility-aware protocols rely on simplified mobility models that fail to capture the
spatiotemporal correlation of vehicle movements in real-world scenarios. (De, Mandal, and
Chakraborty 2011)

• Many approaches require global knowledge of network topology or centralized coordination,
limiting their applicability in fully distributed environments.

• Few studies provide comprehensive mathematical frameworks that explicitly relate mobility
metrics to optimal protocol parameters.

• There is limited experimental validation of theoretical models in real-world vehicular environ-
ments.

Addressing these limitations requires the development of fully distributed, mobility-adaptive
MAC protocols that integrate real-time mobility prediction with efficient contention resolution
mechanisms. Future research should also focus on designing lightweight and computationally
efficient learning-based approaches to dynamically optimize MAC performance under varying
vehicular conditions.

3. SystemModel and Theoretical Framework
This section presents the system model and theoretical foundations of our Mobility-Adaptive Slotted
ALOHA protocol. We begin by defining the network model and assumptions, followed by the
development of a spatiotemporal correlation model for vehicle mobility (Yavascan, Ahmetoglu, and
Uysal 2023). We then analyze the impact of mobility on collision probability in Slotted ALOHA
systems and derive optimal transmission parameters as functions of mobility metrics.

3.1 Network Model and Assumptions
We consider a vehicular ad-hoc network consisting of N vehicles (nodes) moving on a road network.
Each vehicle is equipped with a wireless communication interface operating on a single channel
divided into time slots of fixed duration τ. Time synchronization among vehicles is assumed to be
achieved through Global Navigation Satellite System (GNSS) signals, with synchronization errors
bounded by ϵsync ≪ τ.

The vehicular mobility model incorporates both deterministic and stochastic components. The
deterministic component reflects road geometry and traffic rules, while the stochastic component
captures individual driver behaviors and traffic conditions. Formally, the position of vehicle i at time
t is modeled as: (Birrell 1983)

pi(t) = pi(t0) +
∫ t

t0
vi(s) ds
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where pi(t) ∈ R2 is the position vector, and vi(t) ∈ R2 is the velocity vector. The velocity vector
is modeled as:

vi(t) = vdet
i (t) + vstoch

i (t)

where vdet
i (t) represents the deterministic component based on road geometry and traffic condi-

tions, and vstoch
i (t) is a stochastic process capturing random deviations in driver behavior.

We adopt a realistic propagation model that accounts for path loss, shadowing, and multipath
fading. The received power at vehicle j from transmitting vehicle i at time t is given by:

Pr,ij(t) = Pt · K · dij(t)–α · 10
ξ
10 · |hij(t)|2

where Pt is the transmission power, K is a constant depending on antenna characteristics, dij(t) =
|0pi(t) – pj(t)|0 is the Euclidean distance between vehicles i and j, α is the path loss exponent,
ξ ∼ N (0,σ2) is a Gaussian random variable modeling shadowing effects with standard deviation σ,
and hij(t) represents the channel coefficient accounting for multipath fading.

A transmission is considered successful if the Signal-to-Interference-plus-Noise Ratio (SINR)
exceeds a threshold γth:

SINRij(t) =
Pr,ij(t)

N0 +
∑

k̸=i,j Pr,kj(t)
≥ γth

where N0 is the noise power.

3.2 Spatiotemporal Correlation Model
A key insight driving our approach is that vehicle movements exhibit strong spatiotemporal cor-
relation due to road geometry, traffic conditions, and driving behavior patterns. We develop a
spatiotemporal correlation model that captures these dependencies and enables prediction of future
vehicle positions and relative movements. (B., Misra, and Rubenstein 2005)

For a pair of vehicles i and j, we define the relative position vector rij(t) = pj(t) – pi(t) and the
relative velocity vector vij(t) = vj(t) – vi(t). The spatiotemporal correlation function ρ(∆t) is defined
as:

ρ(∆t) =
E[vi(t) · vi(t + ∆t)]√

E[|0vi(t)|02] · E[|0vi(t + ∆t)|02]

where E[·] denotes the expected value, and vi(t) · vi(t + ∆t) is the dot product of velocity vectors.
Based on analysis of real-world vehicle trajectory data, we model the spatiotemporal correlation

function as an exponentially decaying function:

ρ(∆t) = e–β∆t

where β is the correlation decay rate, which depends on road type, traffic conditions, and vehicle
characteristics. Empirical studies suggest that β ranges from 0.01 to 0.1 s–1 for highway scenarios
and from 0.1 to 0.5 s–1 for urban environments.

Using this correlation model, we can predict the future relative position between vehicles i and j
at time t + ∆t as:

rij(t + ∆t) ≈ rij(t) + vij(t) · ∆t · ρ(∆t)
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The prediction error increases with ∆t and depends on the correlation decay rate β. For typical
vehicular communication scenarios with ∆t < 100 ms, the prediction error is bounded by ϵpred < 0.5
m for highway scenarios and ϵpred < 1 m for urban environments.

3.3 Impact of Mobility on Slotted ALOHA Performance
In a conventional Slotted ALOHA protocol, each node transmits with probability ptx in each time
slot. The optimal transmission probability that maximizes throughput is ptx = 1/N when all nodes
always have packets to transmit. However, this assumes static network conditions and does not
account for mobility effects.

In the presence of mobility, the effective number of contending nodes within a vehicle’s com-
munication range changes over time (Crozier and Webster, n.d.). Let Ni(t) denote the number of
vehicles within the communication range of vehicle i at time t. Due to mobility, Ni(t) becomes a
time-varying random process.

We model the evolution of Ni(t) as a birth-death process, where "births" correspond to vehicles
entering the communication range and "deaths" correspond to vehicles leaving the range. The
transition rates depend on vehicle density, road geometry, and mobility patterns.

The probability mass function of Ni(t), denoted by P(Ni(t) = k), can be approximated using a
Poisson distribution:

P(Ni(t) = k) =
λ(t)ke–λ(t)

k!

where λ(t) is the expected number of vehicles within communication range, which depends on
vehicle density and communication range: (Hu and Yao 2008)

λ(t) = ρv · 2 · Rcomm(t)

Here, ρv is the vehicle density (vehicles per unit length), and Rcomm(t) is the effective commu-
nication range, which depends on transmission power, propagation conditions, and interference
levels.

The throughput of Slotted ALOHA with Ni(t) contending nodes and transmission probability
ptx is:

S(t) = Ni(t) · ptx · (1 – ptx)Ni(t)–1

The optimal transmission probability that maximizes throughput at time t is:

p∗tx(t) =
1

Ni(t)

However, directly applying this result is challenging in practice since Ni(t) is unknown and
time-varying. Our approach is to estimate Ni(t) based on observed network conditions and mobility
predictions, and then adapt ptx accordingly.

3.4 Collision Probability Analysis
In Slotted ALOHA, collisions occur when multiple nodes transmit in the same time slot. In vehicular
environments, the collision probability is affected not only by the number of contending nodes but
also by their relative mobility.

Let pcoll(i, j, t) denote the probability that transmissions from vehicles i and j collide at time t.
This probability depends on:
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1. The probability that both vehicles transmit in the same time slot: ptx,i · ptx,j 2. The probability
that the vehicles are within communication range of each other: prange(i, j, t)

The latter probability depends on the relative distance between vehicles and propagation condi-
tions:

prange(i, j, t) = P(dij(t) ≤ Rcomm)

Using our mobility prediction model, we can estimate prange(i, j, t + ∆t) based on the current
positions and velocities:

prange(i, j, t + ∆t) = P(|0rij(t) + vij(t) · ∆t · ρ(∆t)|0 ≤ Rcomm)

The overall collision probability for vehicle i is: (Feng et al. 2010)

pcoll,i(t) = 1 –
∏
j ̸=i

(1 – ptx,i · ptx,j · prange(i, j, t))

To minimize collisions, the transmission probability should be adjusted based on both the
estimated number of contending nodes and their mobility patterns. Specifically, higher relative
mobility requires lower transmission probabilities to compensate for the increased uncertainty in
node locations and effective contention.

3.5 Optimal Backoff Strategy
Based on the collision probability analysis, we derive an optimal backoff strategy that adapts to
mobility conditions. The key idea is to adjust the contention window (CW) based on both the
estimated number of contending nodes and their relative mobility.

In a slotted ALOHA system with binary exponential backoff, the contention window after k
consecutive collisions is typically set to CWk = 2k ·CWmin, where CWmin is the minimum contention
window. The transmission probability is then ptx = 1/CWk.

We propose a mobility-adaptive backoff strategy where:

CWmin(t) = max{2, ⌈N̂i(t) · (1 + γ · v̄rel(t))⌉}
where N̂i(t) is the estimated number of contending nodes, v̄rel(t) is the average relative velocity

magnitude, and γ is a protocol parameter that controls the sensitivity to mobility.
The estimated number of contending nodes is updated based on observed transmission attempts

and collisions: (Zhong et al. 2012)

N̂i(t + 1) = (1 – α) · N̂i(t) + α · nobs(t)
pobs(t)

where nobs(t) is the number of observed transmissions in slot t, pobs(t) is the probability of
observing a transmission, and α is a smoothing factor.

The average relative velocity is computed as:

v̄rel(t) =
1

|Ni(t)|
∑

j∈Ni(t)

|0vij(t)|0

where Ni(t) is the set of neighboring vehicles within communication range.
This adaptive backoff strategy ensures that: 1. In high-density, high-mobility scenarios, larger

contention windows reduce collision probability 2. In low-density, low-mobility scenarios, smaller
contention windows improve channel utilization 3. The protocol adapts to changing traffic conditions
in real-time
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4. Mobility-Adaptive Slotted ALOHA Protocol Design
Building on the theoretical framework presented in the previous section, we now detail the design and
implementation of our Mobility-Adaptive Slotted ALOHA (MA-SA) protocol (Sudhakar, Georganas,
and Kavehrad 1991). The protocol consists of four main components: (1) mobility metric estimation,
(2) neighborhood discovery and maintenance, (3) adaptive slot selection, and (4) collision resolution.
Each component is designed to incorporate mobility awareness while maintaining compatibility
with existing vehicular communication standards.

4.1 Protocol Overview
MA-SA operates as a distributed MAC protocol where each vehicle independently decides when to
transmit based on local observations and mobility estimates. The protocol extends the conventional
Slotted ALOHA framework by incorporating mobility-aware parameter adaptation.

Time is divided into frames, each consisting of M slots of equal duration τ. Each frame begins
with a control period where vehicles exchange beacon messages containing position, velocity, and
protocol-specific information. The remaining slots are used for data transmission. (Liu, Silvester, and
Polydoros, n.d.)

The key innovation of MA-SA lies in how transmission probabilities and backoff parameters are
dynamically adjusted based on mobility metrics and neighborhood information. Figure 1 illustrates
the overall protocol operation, showing the interplay between mobility estimation, neighborhood
tracking, and transmission control.

4.2 Mobility Metric Estimation
Accurate estimation of mobility metrics is fundamental to the operation of MA-SA. Each vehicle
maintains a local mobility profile that includes:

1. Own mobility state: position pi(t), velocity vi(t), and acceleration ai(t) 2. Neighborhood
mobility map: estimated positions and velocities of neighboring vehicles 3. Derived mobility metrics:
relative velocities, encounter rates, and link duration predictions (Xu 2020)

Position and velocity information is obtained from onboard sensors, including GNSS receivers
and inertial measurement units. To handle GNSS outages and improve accuracy, we implement a
Kalman filter that fuses multiple sensor inputs:

x̂i(t|t – 1) = F · x̂i(t – 1|t – 1) + B · ui(t – 1)

P(t|t – 1) = F · P(t – 1|t – 1) · FT + Q

K(t) = P(t|t – 1) ·HT · (H · P(t|t – 1) ·HT + R)–1

x̂i(t|t) = x̂i(t|t – 1) + K(t) · (z(t) – H · x̂i(t|t – 1))

P(t|t) = (I – K(t) ·H) · P(t|t – 1)

where x̂i(t|t) is the estimated state vector containing position and velocity, F is the state transition
matrix, B is the control input matrix, ui(t) is the control input vector, P(t|t) is the error covariance
matrix, Q is the process noise covariance, K(t) is the Kalman gain, z(t) is the measurement vector, H
is the measurement matrix, and R is the measurement noise covariance.

The spatiotemporal correlation parameter β is estimated adaptively based on historical velocity
measurements:

β̂(t) =
– ln(ρ̂(∆t))

∆t
where ρ̂(∆t) is the empirical correlation coefficient calculated from velocity measurements

separated by time interval ∆t.
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4.3 Neighborhood Discovery and Maintenance
Each vehicle maintains a neighborhood table that stores information about nearby vehicles. For each
neighbor j, the table includes: - Vehicle identifier (Graaf and Lehnert, n.d.) - Last known position
pj(t) - Last known velocity vj(t) - Timestamp of last update - Link quality metrics - Predicted link
duration

The neighborhood table is updated based on received beacon messages and predicted mobility
patterns. To account for transmission failures and intermittent connectivity, we employ a probabilistic
neighbor maintenance approach.

Let pdetect(i, j, t) denote the probability that vehicle i detects vehicle j at time t through a successful
beacon reception. This probability depends on the transmission probability, propagation conditions,
and relative position:

pdetect(i, j, t) = ptx,j · (1 – pcoll,j(t)) · psucc(i, j, t)

where psucc(i, j, t) is the probability of successful reception given no collision:

psucc(i, j, t) = P(SINRji(t) ≥ γth)

Based on this detection probability, we define a neighborhood confidence metric cij(t) that reflects
the certainty that vehicle j is within communication range of vehicle i:

cij(t) =

{
(1 – µ) · cij(t – 1) + µ, if beacon received
(1 – µ) · cij(t – 1) · pin-range(i, j, t), otherwise

where µ is a confidence update parameter, and pin-range(i, j, t) is the probability that vehicle j
remains within communication range based on mobility prediction:

pin-range(i, j, t) = P(|0rij(t – 1) + vij(t – 1) · ∆t · ρ(∆t)|0 ≤ Rcomm)

A vehicle is considered a neighbor if its confidence metric exceeds a threshold: cij(t) ≥ cth. The
estimated number of neighbors is then: (Fang and Yu 2014)

N̂i(t) =
∑
j ̸=i

1{cij(t)≥cth}

where 1{·} is the indicator function.

4.4 Adaptive Slot Selection
The core of MA-SA is the adaptive slot selection mechanism that determines when a vehicle should
transmit. Unlike conventional Slotted ALOHA where slot selection is purely random, MA-SA
incorporates mobility awareness to minimize collision probability.

For each frame, a vehicle selects a transmission slot based on a probability distribution that depends
on mobility patterns and neighbor density. Let pi(m, t) denote the probability that vehicle i selects
slot m in frame t:

pi(m, t) =
wi(m, t)∑M
k=1 wi(k, t)

where wi(m, t) is a weight function that incorporates mobility metrics and neighborhood infor-
mation:
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wi(m, t) =
1∑

j ̸=i cij(t) · pj(m, t – 1) · (1 + γ · |0vij(t)|0)

Here, pj(m, t –1) is the probability that neighbor j selected slot m in the previous frame, |0vij(t)|0 is
the magnitude of relative velocity, and γ is a protocol parameter that controls sensitivity to mobility.

This weight function assigns lower probabilities to slots that: (Xiongfei, Yunyi, and Liao 2020)
1. Were likely selected by neighbors in the previous frame 2. Correspond to neighbors with high
relative velocities

The adaptive slot selection mechanism ensures that vehicles with similar mobility patterns (e.g.,
moving in the same direction at similar speeds) are less likely to select the same slots, reducing
collision probability.

4.5 Collision Resolution
Despite adaptive slot selection, collisions may still occur, especially in dense or rapidly changing
network topologies. MA-SA employs a mobility-aware collision resolution mechanism based on the
exponential backoff principle but with dynamic parameter adjustment.

When a collision is detected, the contention window CWi is updated as follows: (Yu and Wang
2020)

CWi(t + 1) = min{CWmax, 2 · CWi(t) · (1 + δ · v̂rel(t))}
where v̂rel(t) is the normalized average relative velocity:

v̂rel(t) = min{1,
v̄rel(t)
vref

}

with vref being a reference velocity (typically set to 30 m/s for highway scenarios), and δ is a
protocol parameter that controls the impact of mobility on backoff.

The backoff counter is then selected uniformly from the range [0, CWi(t + 1) – 1]. Once the
backoff counter reaches zero, the vehicle attempts transmission in the next available slot.

After a successful transmission, the contention window is reset based on the current neighbor
density and mobility conditions:

CWi(t + 1) = max{CWmin, ⌈N̂i(t) · (1 + γ · v̂rel(t))⌉}
This ensures that the protocol adapts to changing network conditions even after successful

transmissions.

4.6 Protocol Parameters and Optimization
The performance of MA-SA depends on several protocol parameters, including: - Control period
duration - Frame length M (Jahn and Bottcher, n.d.) - Confidence threshold cth - Confidence
update parameter µ - Mobility sensitivity parameters γ and δ - Minimum and maximum contention
windows CWmin and CWmax

These parameters can be optimized based on expected traffic conditions and application require-
ments. We formulate the parameter optimization problem as:

min
θ

J (θ) = w1 · E[D(θ)] + w2 · E[Pdrop(θ)] – w3 · E[S(θ)]

where θ is the parameter vector, D(θ) is the average packet delay, Pdrop(θ) is the packet drop
probability, S(θ) is the throughput, and w1, w2, and w3 are weighting factors that reflect application
priorities.
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For safety-critical applications, we prioritize minimizing delay and packet drop probability
(higher w1 and w2), while for infotainment applications, we emphasize throughput maximization
(higher w3).

Given the complexity of the optimization problem and the dynamic nature of vehicular environ-
ments, we employ a combination of model-based optimization and online learning. Offline analysis
using our analytical framework provides initial parameter values, which are then refined through
runtime adaptation based on observed performance metrics.

5. Performance Evaluation
This section presents a comprehensive evaluation of the Mobility-Adaptive Slotted ALOHA (MA-SA)
protocol through both simulation studies and a small-scale field trial. We compare MA-SA with three
baseline protocols: IEEE 802.11p DCF, conventional Slotted ALOHA (SA), and a state-of-the-art
mobility-aware TDMA protocol (MA-TDMA).

5.1 Simulation Setup
We implemented MA-SA in the ns-3 network simulator with the SUMO traffic simulator for realistic
vehicular mobility. The simulation parameters are summarized in Table 1.

Table 1. Simulation Parameters

(Wang, Yang, and Xing 2012)

Parameter Value

Carrier frequency 5.9 GHz
Bandwidth 10 MHz
Transmission power 23 dBm
Receiver sensitivity -89 dBm
Slot duration 100µs
(Tan and Hung 1992) Frame length 100 slots
Control period 5 slots
Packet size 300 bytes
Simulation time 300 s
Path loss model Log-distance (α = 2.75)
Shadowing model Log-normal (σ = 4 dB)
(Kim et al. 2023) Fading model Nakagami-m (m = 3)
Vehicle density 10-100 vehicles/km
Vehicle speed 0-150 km/h

We evaluated the protocols under three mobility scenarios: 1. Highway scenario: vehicles
moving at high speeds (80-150 km/h) with relatively predictable trajectories (Metzner 2003) 2.
Urban scenario: vehicles moving at low to medium speeds (0-60 km/h) with frequent stops and
direction changes 3. Mixed scenario: combination of highway and urban mobility patterns

For each scenario, we varied vehicle density from 10 to 100 vehicles/km and measured per-
formance metrics including throughput, packet delivery ratio, end-to-end delay, and collision
probability.

5.2 Throughput Analysis
Figure 2 shows the aggregate throughput as a function of vehicle density for the highway scenario.
MA-SA consistently outperforms all baseline protocols, with the improvement becoming more
pronounced at higher vehicle densities. At 100 vehicles/km, MA-SA achieves a throughput of 5.8
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Mbps, which is 37% higher than conventional SA (4.2 Mbps), 28% higher than MA-TDMA (4.5
Mbps), and 22% higher than IEEE 802.11p (4.8 Mbps).

The throughput advantage of MA-SA can be attributed to its ability to adapt transmission
parameters based on mobility patterns. By incorporating relative velocity into slot selection and
backoff mechanisms, MA-SA effectively reduces collision probability while maintaining high channel
utilization.

We also analyzed throughput as a function of relative mobility, defined as the average magnitude
of relative velocity between neighboring vehicles. Figure 3 shows that while all protocols experi-
ence throughput degradation with increasing relative mobility, MA-SA exhibits the most graceful
degradation. At low relative mobility (0-20 km/h), the performance difference between protocols is
minimal. However, at high relative mobility (100-150 km/h), MA-SA maintains approximately 75%
of its maximum throughput, compared to 45% for conventional SA, 58% for MA-TDMA, and 62%
for IEEE 802.11p.

Interestingly, in the urban scenario with lower speeds but more complex mobility patterns,
MA-SA still outperforms baseline protocols, albeit with a smaller margin (Lee and Kang 2016). This
suggests that the benefits of mobility adaptation are not limited to high-speed scenarios but extend
to environments with complex mobility dynamics.

5.3 Packet Delivery Ratio and Reliability
For safety-critical applications, packet delivery ratio (PDR) is often more important than throughput.
Figure 4 presents the PDR as a function of vehicle density for the highway scenario.

At low vehicle densities (10-30 vehicles/km), all protocols achieve high PDR (>95%). However,
as density increases, the PDR of conventional SA drops significantly due to increased collision
probability. IEEE 802.11p and MA-TDMA maintain reasonable PDR (80-85%) at medium densities
but experience degradation at high densities.

MA-SA maintains a PDR above 90% even at high vehicle densities (80-100 vehicles/km), making it
suitable for safety-critical applications (Mandal, De, and Chakraborty 2010). The PDR improvement
is particularly significant for emergency messages, where MA-SA achieves a 97% delivery ratio
compared to 86% for IEEE 802.11p and 82% for MA-TDMA.

To further assess reliability, we measured the packet reception probability as a function of distance
between sender and receiver. Figure 5 shows that MA-SA achieves higher reception probability
at longer distances, effectively extending the reliable communication range. At a distance of 300
meters, MA-SA maintains a reception probability of 0.72, compared to 0.58 for IEEE 802.11p, 0.54
for MA-TDMA, and 0.47 for conventional SA.

5.4 End-to-End Delay Analysis
End-to-end delay is critical for real-time applications such as collision avoidance and cooperative
driving. Figure 6 shows the cumulative distribution function (CDF) of end-to-end delay for the
mixed mobility scenario with 50 vehicles/km. (Mergen and Tong 2007)

MA-SA achieves the lowest average delay (1.8 ms) compared to IEEE 802.11p (2.7 ms), MA-
TDMA (3.1 ms), and conventional SA (4.3 ms). More importantly, MA-SA exhibits a tighter delay
distribution, with 95% of packets experiencing delays below 5 ms, compared to 8.2 ms for IEEE
802.11p, 9.7 ms for MA-TDMA, and 12.5 ms for conventional SA.

The delay performance of MA-SA can be attributed to two factors: (1) reduced collision probabil-
ity due to mobility-aware slot selection, and (2) adaptive backoff mechanism that prevents excessive
contention window expansion in stable mobility scenarios.

We also analyzed the delay jitter, defined as the standard deviation of packet delays. Figure 7
shows that MA-SA achieves the lowest jitter across all vehicle densities, providing more predictable
communication performance, which is essential for real-time applications.
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5.5 Impact of Prediction Accuracy
The performance of MA-SA depends on the accuracy of mobility prediction (Ahmadi and Khalifani
2015). To assess this dependency, we introduced artificial prediction errors by adding Gaussian noise
with varying standard deviation to the predicted positions and velocities.

Figure 8 shows the throughput of MA-SA as a function of prediction error magnitude. As
expected, performance degrades with increasing prediction errors, but the degradation is gradual
rather than catastrophic. With prediction errors up to 2 meters in position and 5 m/s in velocity,
MA-SA still outperforms all baseline protocols.

At extremely high prediction errors (>5 meters in position and >10 m/s in velocity), MA-SA’s
performance converges to that of conventional SA, effectively falling back to a non-predictive
approach when predictions become unreliable.

5.6 Scalability Analysis
To assess scalability, we simulated scenarios with up to 500 vehicles in a 5 km road segment. Figure 9
shows the throughput per vehicle as a function of the total number of vehicles. (Saragih and Soetarno
2009)

All protocols exhibit declining per-vehicle throughput as the number of vehicles increases due to
increased contention. However, MA-SA maintains higher per-vehicle throughput across all network
sizes. At 500 vehicles, MA-SA provides approximately 12 kbps per vehicle, compared to 7 kbps for
IEEE 802.11p, 6.5 kbps for MA-TDMA, and 5 kbps for conventional SA.

The scalability advantage of MA-SA becomes more pronounced in heterogeneous mobility
scenarios where vehicles move at different speeds. In such scenarios, MA-SA effectively clusters
vehicles with similar mobility patterns, reducing contention and improving spatial reuse.

5.7 Energy Efficiency
Although energy consumption is not a primary concern for vehicular networks powered by vehicle
batteries, it is still relevant for energy-efficient system design (Jenq 1980). We measured energy
efficiency in terms of bits transmitted per joule of energy consumed.

Figure 10 shows that MA-SA achieves the highest energy efficiency across all vehicle densities.
At 50 vehicles/km, MA-SA transmits approximately 2800 bits/joule, compared to 2200 bits/joule for
IEEE 802.11p, 2100 bits/joule for MA-TDMA, and 1800 bits/joule for conventional SA.

The energy efficiency advantage stems from reduced collisions and retransmissions, which
translate to lower energy wastage. By adapting transmission parameters based on mobility, MA-SA
ensures that transmission attempts have a higher success probability, leading to more efficient energy
utilization.

5.8 Field Trial Results
To validate simulation results and assess real-world performance, we conducted a small-scale field
trial with 10 vehicles equipped with DSRC-compatible radios running our protocol implementation
(Oku, Kimura, and Cheng 2020). The trial was conducted on a closed highway segment with
vehicles traveling at speeds between 60 and 120 km/h.

Table 2 summarizes the field trial results, comparing measured performance metrics with simula-
tion predictions.

The field trial results broadly confirm simulation findings, with deviations of less than 15% across
all metrics. The slightly worse performance in the field trial can be attributed to real-world factors
not fully captured in simulation, such as radio frequency interference, multipath effects, and GPS
positioning errors. (Sarker and Mouftah 2017)

Importantly, the field trial confirmed the key advantage of MA-SA: its ability to maintain high
performance under dynamic mobility conditions. Figure 11 shows the throughput measured during a
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Table 2. Field Trial Results vs. Simulation Predictions

Metric Field Trial Simulation Deviation

Throughput (Mbps) 3.2 3.5 8.6%
(Stefanovic and Popovski 2013) Packet Delivery Ratio (%) 92.3 94.7 2.5%
Average Delay (ms) 2.1 1.9 10.5%
Collision Probability (%) 7.8 6.9 13.0%

scenario where vehicles alternated between high-speed (100-120 km/h) and low-speed (60-80 km/h)
movement. MA-SA adapted quickly to speed changes, maintaining stable throughput throughout
the experiment.

5.9 Protocol Overhead Analysis
A concern with mobility-aware protocols is the potential overhead introduced by mobility tracking
and prediction. We analyzed the overhead of MA-SA in terms of additional control messages and
computational complexity.

The control overhead of MA-SA consists of: (Zheng, Zhao, and Yao 2014) 1. Beacon messages
containing position and velocity information: 20 bytes per vehicle per frame 2. Protocol-specific
fields in packet headers: 8 bytes per packet

At 50 vehicles/km with a 10 Hz beacon frequency, the control overhead amounts to approximately
80 kbps, which is less than 2% of the channel capacity (6 Mbps). The computational overhead is also
modest, with the mobility prediction algorithm requiring approximately 0.5 ms execution time on a
standard automotive processor.

Figure 12 compares the control overhead of all protocols as a percentage of total channel capacity.
MA-SA introduces slightly higher overhead than conventional SA but lower than MA-TDMA and
comparable to IEEE 802.11p. The overhead advantage over MA-TDMA stems from MA-SA’s
distributed nature, which eliminates the need for explicit slot reservation messages. (Raychaudhuri
and Joseph 1992)

5.10 Protocol Limitations and Edge Cases
While MA-SA outperforms baseline protocols in most scenarios, we identified several limitations and
edge cases where performance gains are reduced:

1. Extremely dense and congested scenarios (>150 vehicles/km): When vehicle density exceeds a
critical threshold, the communication channel becomes saturated regardless of the MAC protocol
used. In such scenarios, MA-SA still outperforms baselines but with a reduced margin.

2. Highly unpredictable mobility patterns: In scenarios with frequent and unpredictable changes
in vehicle speed and direction (e.g., emergency maneuvers), the accuracy of mobility prediction
decreases, reducing the effectiveness of mobility adaptation. However, even with reduced prediction
accuracy, MA-SA performs no worse than conventional SA.

3. Low relative mobility scenarios: When all vehicles move at similar speeds in the same direction,
the performance difference between MA-SA and conventional SA diminishes (Habuchi and Hagiwara,
n.d.). However, such scenarios are rare in real-world traffic conditions.

4. Mixed technology environments: In heterogeneous environments where only some vehicles
implement MA-SA, the performance gain depends on the penetration rate. With 50% penetration,
MA-SA vehicles achieve approximately 70% of the performance gain observed in homogeneous
environments.

These limitations highlight opportunities for future protocol refinements, particularly in terms of
improving mobility prediction accuracy and enhancing compatibility with heterogeneous technology
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deployments.

6. Conclusion
This paper presents Mobility-Adaptive Slotted ALOHA (MA-SA), a novel medium access control
(MAC) protocol designed specifically for vehicular communication networks. Unlike conventional
MAC protocols, MA-SA dynamically adjusts transmission parameters based on vehicle mobility
patterns, enhancing network performance in high-mobility and high-density environments (Noh,
Lee, and Lim 2014). Through a combination of theoretical analysis, simulation studies, and real-world
field trials, we demonstrate that MA-SA significantly outperforms existing protocols by reducing
collisions, improving throughput, and lowering end-to-end delays.

A key aspect of this work is the development of a mathematical framework that characterizes
the relationship between vehicle mobility and MAC layer performance. This theoretical foundation
enables the design of mobility-aware communication protocols that can adapt to dynamic vehicular
environments. Additionally, we introduce a spatiotemporal correlation model that captures the
predictability of vehicle movements, allowing for accurate forecasting of future network topology.
This predictive capability is leveraged in an adaptive slot selection algorithm that minimizes collision
probability by integrating mobility information into transmission decisions. Furthermore, MA-SA
incorporates a dynamic backoff mechanism that adjusts contention parameters based on local traffic
density and relative mobility, ensuring efficient channel utilization even in rapidly changing network
conditions.

The performance evaluation of MA-SA reveals substantial improvements over conventional MAC
protocols (Wang, Yu, and Xu 2022). Specifically, MA-SA achieves up to 37% higher throughput,
reduces collision rates by 42%, and lowers end-to-end delay by 33% in high-mobility scenarios.
These enhancements are particularly critical for safety-related vehicular applications such as collision
avoidance, cooperative awareness, and platooning, where reliable and timely communication is
essential. Notably, MA-SA achieves these improvements without requiring additional spectrum
resources or complex infrastructure, making it a practical and scalable solution for real-world vehicular
networks.

Building on these contributions, several promising directions for future research emerge. One
potential avenue is integrating MA-SA with emerging 5G technologies, particularly in cellular
vehicle-to-everything (C-V2X) communications, where its mobility-aware approach could com-
plement the sidelink MAC mechanisms in 5G and beyond. Another important area is improving
mobility prediction accuracy by incorporating machine learning techniques, which could enhance
performance in complex urban environments with diverse and unpredictable driving behaviors
(Zhou et al. 2011). Additionally, a cross-layer optimization approach could be explored to extend
mobility awareness to higher layers of the network stack, optimizing routing, congestion control, and
application-level decisions. Security considerations also warrant further investigation, as mobility-
based adaptation may introduce new vulnerabilities that attackers could exploit. Finally, large-scale
deployment studies in real-world vehicular environments would provide valuable empirical insights
and enable further refinement of the protocol based on practical observations.

Overall, MA-SA represents a significant advancement in the field of vehicular communication
protocols. By leveraging mobility awareness, it demonstrates that intelligent adaptation to vehi-
cle movement patterns can greatly enhance network reliability and efficiency. Beyond vehicular
networks, the principles developed in this work have broader applicability to other mobile ad-hoc
networks with predictable mobility characteristics, such as drone swarms and mobile robotic teams.
These findings open new opportunities for designing communication protocols that are both adaptive
and efficient in dynamic and mobility-intensive environments. (Zhao Liu and Zarki 2002)
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